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1 Introduction
This document addresses the problem of extending database links across Input/Output Con-
troller (IOC) boundaries.  It lays a foundation by reviewing the current system and proposing
an implementation specification designed to guide all work in this area.

The rest of the document describes an implementation that is less ambitious than our formal-
ly stated proposal, one that does not extend the reach of all database links across IOC bound-
aries.  Specifically, it introduces an implementation of input and output links and comments
on that overall implementation.  Finally, we include a set of manual pages describing each
of the new functions the implementation provides.

Although we have limited the scope of the implementation by not extending the reach of all
database links, the work we have done strictly adheres to the implementation specification
formally proposed in section 2.  Again, all continuing work in the extension of database links
across IOC boundaries should adhere to the same.

2 Theory of Operation
In this section we develop the theoretical framework that serves as a foundation for all work
involving the extension of database links across IOC boundaries.

2.1 The Current System

A database is made up of a finite non–empty set of records �.  We can ‘‘connect’’ these re-
cords using links; forward–type links (forward links), input–type links (input links), and out-
put–type links (output links).  The links in � define a binary relation �, a set of ordered pairs,
on set �.  From �, we can construct a new binary relation � on � by taking the transitive
symmetric reflexive closure of �.  This new binary relation � is the equivalence relation in-
duced by �.  Relation � partitions the database � into a set of equivalence classes.  In other
words, relation � assures that those records that are somehow connected are in the same
equivalence class and those records that are not connected are in different equivalence
classes.

Currently we load a database, possibly with many equivalence classes, onto a single IOC.
We could take a database with multiple equivalence classes and ‘‘split’’ it by loading some
of the records onto a different IOC.  This could only be done if we were sure that the records
we were moving were not ‘‘connected’’ to any of the records that were staying, that is, we
never separated records that were in the same equivalence class.  If we wanted to split a data-
base, we would be forced to move entire equivalence classes at a time.  This restriction on
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splitting databases, moving only entire equivalence classes at a time, exists because we cur-
rently cannot process database links across IOC boundaries.  This is something we would
like to change.

2.2 Motivation for Something New

Database records are often directly associated with devices and each device is attached to
a single IOC.  Those database records that are directly associated with a device must reside
on the same IOC to which the device is attached.

Frequently, actions taken by one device depend on the state of another device.  This interac-
tion is facilitated by the database records associated with each device communicating over
database links.  This works fine if the two devices are attached to the same IOC, but is cur-
rently not possible if they are not.

2.3 Our Proposal

Simply stated, we are proposing to extend the reach of all database links across IOC bound-
aries.  Before stating our proposal more formally, we must first make a distinction in the ter-
minology regarding databases.

When designing a database, it is understood that all the records are stored in a single database
file and that all the records in that file reside on a single IOC.  We would now like to change
that understanding and design databases in which all the records are not necessarily stored
in the same database file and, therefore, do not necessarily reside on the same IOC.  This
introduces ambiguity to the word database.

The word database could now mean the set of records physically stored in a single database
file and placed onto a single IOC, or it can refer to the database as seen by the database de-
signer –– a set of records that are connected to each other independent of where each record
resides.  Until now, those two definitions have always been the same; since there was no inde-
pendence regarding where records resided, there was no need to distinguish between them.

We call the set of records that are physically stored in a single database file and placed onto
a single IOC a physical database.  The set of records, as viewed by the database designer, that
are possibly connected to each other using database links we call a logical database.

With that distinction, we are now ready to state the proposal with its implementation specifi-
cation.

We propose to extend the reach of all database links across IOC
boundaries.  In doing so, we must assure that there is no semantic dif-
ference in placing a logical database entirely into one physical data-
base or arbitrarily partitioning it over any number of physical data-
bases.

By extending the reach of database links we are introducing opportunities for more things
to go wrong (e.g., problems associated with the communications hardware and software) that
did not exist before.  In dealing with these new problems we may be required to make addi-
tions to the list of conditions that can raise alarms or even add new alarm types.  We are, there-



3

fore, creating an environment where a database designer can determine whether or not a log-
ical database is partitioned over many physical databases simply by observing alarm
conditions that were never possible before.  This is not a violation of the proposal’s imple-
mentation specification as it was intended.  The proposal’s intention is to assure that the se-
mantics of all the parameters specified during database design (e.g., process passive versus
not process passive specifications on input and output links) are preserved.  It is not intended
to make the partitioning of logical databases entirely indiscernible.

2.4 Maintaining Loosely Coupled IOCs

In addition to preserving the semantics of all database links, an implementation that extends
the reach of database links across IOC boundaries must also strive to keep the IOCs loosely
coupled.  This constraint is one that is shared by all components of the system.

By its very nature, ‘‘connecting’’ IOCs with database links induces tighter coupling between
the IOCs.  That is unavoidable.  However, different implementations might increase the cou-
pling unnecessarily.

It is our goal to minimize the inherent increased coupling effect introduced by any imple-
mentation of database links across IOC boundaries.  To that end, we designed an imple-
mentation that insures that no IOC waits for communication with another IOC by introduc-
ing a new locking primitive, LOCKNOWAIT.  Additionally, we insure that no IOC is
critically dependent on the existence of any other IOC through the use of alarms and a con-
nection handler routine.

3  Input Links
The implementation includes input links (INP, SDIS, DOL, etc.) that are nonprocess passive
and either maximize severity or nonmaximize severity.  Input links are essentially managed
using channel access.  A newly–spawned task establishes monitors on the remote source pro-
cess variables.

3.1 Detecting Links that Refer to Remote Process Variables

During IOC initialization, specifically during database initialization, an attempt is made to
resolve the database addresses of the process variables named by the input links.  This resolu-
tion will only succeed if both the source and destination records of the link are in the same
physical database.  If the resolution fails, it is assumed that the link is referring to a process
variable in another physical database.

Each input link that has unresolved database addresses will be represented by a node in a list,
the Input List.  As IOC initialization continues, specifically during record support initializa-
tion, a node is created and added to the Input List for each such link.

3.2 Establishing Monitors on Remote Process Variables

At the end of IOC initialization, a new task is spawned.  This new task’s responsibility is to
establish a monitor on the source process variables represented by each of the elements in
the Input List and wait for events to occur.  Each monitor is not only responsible for reporting
the value of the source field, but also the alarm severity and status of the source record.
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3.3 Waiting for Events and Reading Values

After all initialization database processing begins.  Each time a monitor reports in, the new
value, alarm status, and alarm severity of the source record are copied into the appropriate
node in the Input List.  Note that the new value is not copied into the destination record.

When the record specifying the input link gets processed, the connection to the remote pro-
cess variable is checked.  If the connection has been lost, the destination record’s alarm
condition is raised to indicate the input value may be invalid.  If the connection is intact, the
value from the node in the Input List is copied to the destination field.  If the input link also
requests maximize severity, the destination record’s alarm status is also updated using the
source record’s alarm severity.

4 Output Links
The implementation includes output links that are both nonprocess passive and nonmaximiz-
ing severity.  Output links are essentially managed by channel access.  The output values are
written to elements in a shared list.  Later a sleeping task awakens, traverses the list, and
writes the value to the remote target process variable.

4.1 Detecting Links that Refer to Remote Process Variables

During IOC initialization, specifically during database initialization, an attempt is made to
resolve the database addresses of the process variables named by the output links.  This reso-
lution will only succeed if both the source and destination records of the link are in the same
physical database.  If the resolution fails, it is assumed that the link is referring to a process
variable in another physical database.

Each output link that has unresolved database addresses will be represented by a node in a
list, the Output List.  As IOC initialization continues, specifically during record support ini-
tialization, a node is created and added to the Output List for each such link.

Also during database initialization a shared binary semaphore, LookAtBuffer, is initialized
to zero.  This semaphore is used for inter task communication and is explained in detail later.

4.2 Establishing Connections to Remote Process Variables

At the end of IOC initialization, a new task is spawned, an output demon.  This new task’s
responsibility is to establish connections and connection handler routines for each of the
nodes in the Output List and then wait on the binary semaphore, P(LookAtBuffer), that is
signalled during record processing.

4.3 Writing Values

Each time an output link referring to a remote process variable is processed, the value of the
source field in the database record is copied into the appropriate node in the Output List.
After the field has been copied, the node in the Output List is moved to the Write List and
the binary semaphore is signalled to wake the waiting output demon, V(LookAtBuffer).
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Eventually, the output demon awakens and traverses the Write List.  For each node in the list,
the connection to the remote destination process variable is checked.  If the connection is
broken, the source record’s alarm condition is raised to indicate the problem.  If the connec-
tion is intact, the value from the node in the Write List is written to the destination field using
channel access and the element is returned to the Output List.

In section 4.2 we noted that a connection handler routine was established for each node in
the Output List.  The connection handler routine is executed every time the connection status
of one of the channels changes.  If the connection status goes from disconnected to con-
nected, the connection handler checks if the value associated with the relevant node was ever
requested to be written.  If it was, the value is immediately moved to the Write List (if not
already there) and the binary semaphore is signalled, V(LookAtBuffer).  Note that the value
is scheduled to be written here even though there was not necessarily a write pending as a
result of the associated output link being processed.

As stated previously, we are using one task to copy the database value into the Output List
node and then signalling another task, the output demon,  to write the value to the remote
process variable.  We therefore cannot be guaranteed that the output demon will wake up in
time to write the value from the list before a new value from the database overwrites it.  When
processing an output link that refers to a remote process variable, if it is discovered that the
new output value is overwriting the previous value that was never sent to the remote process
variable, the source record’s alarm condition is raised to report the lost value.

4.4 Task Synchronization

The implementation of output links calls for choreography amongst multiple processes.  The
solution to the problems introduced by a multiple process system is non trivial and, therefore,
warrants closer inspection.   The implementation for output links calls for three independent
processes, possibly executing simultaneously.  All three processes interact with the Write
List.

4.4.1 Producers and Consumers

Two of the processes are producers as they are responsible for placing nodes onto the Write
List.  The first process executes dbcaPutLink() during record processing.  The second pro-
cess executes the connection handler routine my_connection_handler() when the connec-
tion status of a channel changes.

The third process is a consumer as it is responsible for removing nodes from the Write List.
This process is the one introduced in section 4.2.  It is the output demon that is explicitly
spawned and executes dbCaProcessOutlinks().

All three processes require mutually exclusive access to the Write List.  Mutually exclusive
access is provided by the lock Buffer.  Each node in the Output List also has its own lock.
Additionally, each node can identify whether or not it is on the Write List by inspecting its
state field and determine if its value has ever been requested to be written to a remote process
variable by inspecting its ever_written field.
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4.4.2 Locking

In order to maintain loose coupling between IOCs, our implementation introduces a second
locking primitive, LOCKNOWAIT, designed to be used with the traditional locking primi-
tive LOCK.

LOCKNOWAIT works as follows.  If the lock being sought is available, LOCKNOWAIT
takes the lock and returns immediately with the boolean value TRUE.  If the lock is unavail-
able, LOCKNOWAIT simply returns immediately with the Boolean value FALSE.

The basic differences between LOCK and LOCKNOWAIT are that LOCKNOWAIT 1) does
not wait for a lock it cannot immediately acquire and, 2) returns a Boolean value indicating
whether or not it successfully acquired the lock.

This maintains the loose coupling between IOCs by assuring that dbCaPutLink() never
waits for data to be written between IOCs.

4.4.3 The Algorithm

When one of the producers places a node onto the Write List, it signals the consumer using
the binary semaphore introduced in section 4.1, V(LookAtBuffer).

Initially, each output link that refers to a remote process variable is represented by a node
in the Output List and the Write List is empty.  The following is the pseudocode for each of
the producers.

dbCaPutLink()

if (LOCKNOWAIT node)

if (copy value is successful)

node.ever_written = TRUE

if (node.state == OFF_WRITELIST)

node.state = ON_WRITELIST

LOCK Buffer

push node onto Write List

UNLOCK Buffer

V(LookAtBuffer)

else

raise alarm /* overwrite */

endif

else

print error message

endif

UNLOCK node

else

raise alarm /* node already locked */

endif
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my_connection_handler()

if (connection is re–established)

LOCK node

if (node.ever_written && node.state == OFF_WRITELIST)

node.state = ON_WRITELIST

LOCK Buffer

push node onto Write List

UNLOCK Buffer

endif

UNLOCK node

V(LookAtBuffer)

endif

The consumer is signalled by a producer when the producer places a node onto the Write
List.  The consumer then wakes up and processes each node in the list.

Each node’s connection status is checked.  If the connection is intact, the value is written and
the node is removed from the Write List.  If the connection is broken, an alarm condition is
raised and the node is moved to a temporary holding list, the Disconnected List.

Once all the nodes in the Write List have been processed, i.e., returned to the Output List or
moved to the Disconnected List, the nodes on the Disconnected List are returned to the Write
List.  The following is the pseudocode for the consumer.

dbCaProcessOutlinks() /* output demon */

while (TRUE)

P(LookAtBuffer)

done = FALSE

while (!done)

LOCK Buffer

pop node off Write List

UNLOCK Buffer

if (node)

LOCK node

if (this node’s channel is connected)

ca_put() node’s value

state = OFF_WRITELIST

else

raise node’s alarm /* disconnected */

push node onto Disconnected List

endif

UNLOCK node

else

done = TRUE

endif

endwhile

LOCK Buffer

Move nodes from Disconnected List onto Write List

UNLOCK Buffer

endwhile
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4.4.4 An Optimization

In inspecting the interaction between the first producer (the one executing dbCaPutLink()
during record processing) and the consumer, we discovered the opportunity for optimiza-
tion.  Consider the following scenario.  The system is initialized with an empty Write List.
During record processing the first producer calls dbCaPutLink().  In doing so, it locks the
node, copies the value, moves the node onto the Write List, signals the consumer, and un-
locks the node.

Eventually the consumer wakes up as a result of being signalled by the producer.  It pops the
node off the Write List, locks the node, writes the value, returns the node to the Output List,
and unlocks the node.

Consider the amount of context switching that occurs if the consumer starts executing im-
mediately after the producer signals it.  After popping the node off the Write List, the con-
sumer attempts to lock the node.  This fails because the producer still holds the lock.  The
producer must start executing again simply to unlock the node and then the consumer can
resume execution.

All of this unnecessary context switching can be avoided if the producer simply unlocks the
node before signaling the consumer.  This is done by moving the unlock node command up
into the appropriate places in the ‘‘if’’ structures producing pseudocode that is logically
equivalent to the original but is significantly more efficient during execution.

dbCaPutLink() /* optimized */

if (LOCKNOWAIT node)

if (copy value is successful)

node.ever_written = TRUE

if (node.state == OFF_WRITELIST)

node.state = ON_WRITELIST

LOCK Buffer

push node onto Write List

UNLOCK Buffer

UNLOCK node

V(LookAtBuffer)

else

raise alarm /* overwrite */

UNLOCK node

endif

else

print error message

UNLOCK node

endif

else

raise alarm /* node already locked */

endif

This solution to the task synchronization problem ensures that no request will sit on the Write
List indefinitely, i.e., the consumer will always be signalled to find the node and attempt to
write it.  It is possible, however, for the consumer to wake up and inspect the Write List only
to find nothing there.
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4.5 Known Problems – Output Links

As mentioned earlier, output links are essentially managed by channel access.  The following
describes acknowledged problems in the implementation of output links.

4.5.1 Writing Values

Output values are written from the Write List to remote process variables using ca_put().
Calling ca_put() from a source IOC ultimately results in a call to dbPutField() on the target
IOC.  Unfortunately, dbPutField() writes the value to the field and then decides whether or
not to process the target record based on the definition of that field in the destination record’s
ASCII definition.  This is wrong.  Whether or not a record gets processed as a result of an
output link is determined by the process passive/nonprocess passive specification on the
link, not the ASCII definition of the target record type.

4.5.2 Connection Management

The destination of the output link has no way of knowing if its value is stale because the
source IOC is down.  Further, once the source IOC is rebooted, until the record that specifies
the output link is processed, the value of the source of the output link and the value of the
destination of the output link will be out of synchronization, i.e., the destination will still have
the last value received from the last ca_put().

Currently, it is necessary to spawn a separate vxWorks task from the output demon whose
only function is to inherit the output demon’s channel access context and make a call to
ca_pend_event() that waits forever.  This kludge is the only known way to assure that lost
connections are re–established when connecting IOCs using channel access.

5 Comments on the Implementation
In this section we address overall issues associated with the implementation.  We discuss the
implementation’s commitment to loose coupling between IOCs, describe the impact of
introducing new database field types, introduce new alarm types, and identify some of the
issues and problems that are, as yet, still unresolved.

5.1 Loose Coupling between IOCs

One of the primary goals of the EPICS system is to maintain loose coupling between IOCs.
The motivation for this is clear and well–founded; however, the arguments for that decision
are beyond the scope of this document.

The implementation of input and output links has strongly adhered to this goal by reading
from and writing to buffers that are filled asynchronously.  The extent to which tighter cou-
pling exists as a result of the implementation is manifested by the introduction of new alarm
types discussed in section 5.3.

5.2 Impact of Adding New Field Types

There should be no need to change any of the code in the implementation as a result of adding
new database field types in the future.  Provided that new field types are properly handled
in channel access (i.e., in the establishment of monitors and in ca_put()), the implementation
is entirely immune from any potential anomalies introduced by new database field types.
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5.3 New Alarms

As mentioned in section 2.3, by extending the reach of database links we are introducing op-
portunities for more things to go wrong.  In dealing with these new types of errors, we are
required to make additions to the conditions that can raise alarms during record processing.
The following is a list of conditions introduced by the implementation that are capable of
raising alarms.

Severity Status Function Description
VALID LINK dbCaGetLink() The monitor channel to the remote

source process variable on an input
link is discovered disconnected.

VALID LINK dbCaProcessOutlinks() The output channel to the remote
destination process variable on an
output link is discovered to be
disconnected by the output demon.

VALID LINK dbCaPutLink() The last value to be written was not
written in time by the output demon
and is being overwritten by the new
value.

VALID LINK dbCaPutLink() A problem occurred when copying
the value from the source process
variable to the temporary store for
the output demon.  The value in the
temporary store is labeled invalid
instructing the output demon not to
send the value, however, the correct
value is never sent.

VALID LINK dbCaPutLink() The output demon or connection
handler had the lock when record
processing tried to write another
value out on the link.  Record 
processing did not wait and the
write was aborted.

5.4 Unresolved Issues – System Wide

This implementation is only intended to implement input and output links that are nonpro-
cess passive and output type links that are nonmaximize severity.  The problems of how to
implement process passive, output maximize severity links, and forward links are still un-
solved.
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5.5 Known Problems – Overall Implementation

The following describes the acknowledged problems we encountered in providing the im-
plementation.  They are, as yet, still unresolved.

5.5.1 Channel  Access and Database Technologies

Channel access has not been updated to understand the new views of databases.  Any .c file
that makes calls to channel access, and hence requires the appropriate channel access header
files, cannot include the new database header files.  Therefore, we cannot mix channel access
and database calls and/or structures in the same .c file.

5.5.2 Connection Management

Moving a physical database from one IOC to another will cause all the channel access con-
nections attached to it to be broken and never become re–established as long as the database
resides on the new IOC.  Channel access can only re–establish those channels if the
associated process variables, not necessarily the original physical database, are booted onto
the original IOC.

6 New Functions
Following is a description of each of the new functions provided by our implementation.
Each function is described in a manual page format.

Some of the new functions return values to indicate success or failure.  Some of those func-
tions call existing EPICS functions.  Occasionally, when functions call existing EPICS func-
tions, their return status is based on the return status received from the existing EPICS func-
tions.  For example, dbCaAddDbCaInlink() calls the already existing dbNameToAddr() and
therefore is capable of returning any return code that dbNameToAddr() can return, including
its return code to indicate successful completion.

Throughout the following documentation we have adopted a naming convention regarding
arguments that refer to database field types.  The convention is as follows:

{dest, source}_{new, old}_{dbf, dbr}_type

where
dest – a description of a destination database field type
source – a description of a source database field type

new – a description using the new database field types
old – a description using the old database field types

dbf – a description using the DBF_XXX field type
dbr – a description using the DBR_XXX field type



12

	���

dbCaAddInlink() – called for each input PV_LINK during record initialization


�	
�
�


long dbCaAddInlink(plink, pdest_record, dest_fieldname)
struct link *plink;
void *pdest_record;
char *dest_fieldname;

��
������
	

This routine is called during record initialization for each input link that is still
PV_LINK, i.e., those links that failed to resolve database addresses during database
initialization and, hence, be converted from PV_LINK to DB_LINK.  It finds the da-
tabase address of the destination process variable specified by pdest_record and
dest_fieldname by calling dbNameToAddr() and dynamically allocates the ap-
propriate number of bytes as a temporary store for incoming values from channel ac-
cess monitors.  The link type is converted from PV_LINK to CA_LINK.

�����	


any return code from dbNameToAddr() (including its success rc)
S_dbca_failedmalloc unable to dynamically allocate memory
S_dbca_nullarg one of the incoming pointer arguments was NULL
S_dbca_dbfailure problem in calling one of the db routines


�� ��



dbCaGetLink() and dbCaProcessInlinks()
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	���

dbCaAddOutlink() – called for each output PV_LINK during record initialization


�	
�
�


long dbCaAddOutlink(plink, psource_record, source_fieldname)
srtuct link *plink;
void *psource_record;
char *source_fieldname;

��
������
	

This routine is called once during record initialization for each output link that is still
a PV_LINK, i.e. those links that failed to resolve database addresses during database
initialization and, hence, be converted from PV_LINK to DB_LINK.  It finds the da-
tabase address for the source process variable specified by psource_record and
source_fieldname by calling dbNameToAddr() also dynamically allocates the ap-
propriate number of bytes memory to act as a temporary store between the time the
record is processed and the time it is sent to the remote process variable.  The link
type is converted from PV_LINK to CA_LINK.

�����	


any return code from dbNameToAddr() (including its success rc)
S_dbca_failedmalloc unable to dynamically allocate memory
S_dbca_nullarg one of the incoming pointer arguments was NULL
S_dbca_dbfailure problem in calling one of the db routines


�� ��



dbCaPutLink() and dbCaProcessOutlinks()
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	���

dbCaGetLink() – called by record processing when inputting on a CA_LINK


�	
�
�


long dbCaGetLink(plink)
struct link *plink;

��
������
	

This routine is called during record processing when reading from an input
CA_LINK.  If the connection to the source process variable is noted to be down when
this routine gets executed, then no value is read and an alarm condition is raised in
the  destination record.  If the connection is intact, then the value is copied from the
temporary store acquired by dbCaAddInlink() by calling dbPut().

�����	


any return code from dbPut() (including its success rc)
S_dbca_nullarg one of the incoming pointer arguments was NULL
S_dbca_foundnull found NULL pointer where one should not be


�� ��



dbCaAddInlink() and dbCaProcessInlinks()
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	���

dbCaLinkInit() – called during IOC initialization


�	
�
�


void dbCaLinkInit(count)
int count;

��
������
	

This routine is called twice during IOC initialization, once before record support ini-
tialization to initialize variables and once after record support initialization to spawn
necessary tasks.  The argument count must be one for the first call and two for the
second call.

�����	


N/A.


�� ��



None.
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	���

dbCaProcessInlinks() – spawned once after all record initialization


�	
�
�


void dbCaProcessInlinks()

��
������
	

This routine is spawned as a separate task at the end of IOC initialization.  If there
are no input CA_LINKs in the database, this task terminates immediately.  If there
are input CA_LINKs, this routine initiates the search for the remote source process
variables and establishes monitors on them specifying our own event handler rou-
tine.  It then waits forever for incoming events on those monitors.

Our event handler routine copies the data value and the alarm status from the remote
source process variable.  Later, when processing the record with the input link, the
value and alarm status of the source process variable are read from the copied values.

�����	


N/A.


�� ��



dbCaAddInlink() and dbCaGetLink()
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	���

dbCaProcessOutlinks() – spawned once after all record initialization


�	
�
�


void dbCaProcessOutlinks()

��
������
	

This routine is spawned as a separate task at the end of IOC initialization.  It is the
output demon.  If there are no output CA_LINKs in the database, this task terminates
immediately.  If there are output CA_LINKs, this routine initiates the search for the
remote process variables and provides a connection handler routine.

This routine waits for requests to output values to remote destination process vari-
ables.  As it receives each request, the connection status to the remote destination pro-
cess variable is checked.  If the connection is intact, the value is written.  If the con-
nection has been broken, an alarm condition is raised in the source record.

The connection handler routine is responsible for detecting changes in connection
status and processing those connections whose status goes from disconnected to con-
nected.  For those connections, if a request to write the value has ever been made, the
value is immediately scheduled to be written again.

�����	


N/A.


�� ��



dbCaAddOutlink() and dbCaPutLink()



18

	���

dbCaPutLink() – called by record processing when outputting on a CA_LINK


�	
�
�


long dbCaPutLink(plink, poptions, pnrequest)
struct link *plink;
long *poptions;
long *pnrequest;

��
������
	

This routine is called during record processing when writing to an output CA_LINK.
The value to be written is copied to a shared buffer using the database routine dbGet-
Field(), hence the need for the two arguments poptions and pnrequest.

After the value is copied, this routine determines if there is a pending output request
on this process variable.  If there is, an alarm is raised to indicate that an output value
has been lost (not outputted) and a new value has been written over it.  If there is not,
another task, the output demon, is signaled to wake up and write the value.

�����	


any return code from dbGetField() (including its success rc)
0 successfully raised alarm status
S_dbca_nullarg one of the incoming pointer arguments was NULL
S_dbca_foundnull encountered a NULL pointer where one should not be
S_dbca_dbfailure problem in calling one of the db routines


�� ��



dbCaAddOutlink() and dbCaProcessOutlinks()


